Fano weighted complete intersections of large codimension

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Non-vanishing for Fano Weighted Complete Intersections

We show that Ambro–Kawamata’s non-vanishing conjecture holds true for a quasi-smooth WCI X which is Fano or Calabi-Yau, i.e. we prove that, if H is an ample Cartier divisor on X , then |H | is not empty. If X is smooth, we further show that the general element of |H | is smooth. We then verify Ambro–Kawamata’s conjecture for any quasi-smooth weighted hypersurface. We also verify Fujita’s freene...

متن کامل

Four-dimensional Fano toric complete intersections

We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.

متن کامل

Toric complete intersections and weighted projective space

It has been shown by Batyrev and Borisov that nef partitions of reflexive polyhedra can be used to construct mirror pairs of complete intersection Calabi–Yau manifolds in toric ambient spaces. We construct a number of such spaces and compute their cohomological data. We also discuss the relation of our results to complete intersections in weighted projective spaces and try to recover them as sp...

متن کامل

Low Codimension Fano–enriques Threefolds

Introduction In the 1970s, Reid introduced the graded rings method for the explicit classification of surfaces, which he used to produce a list of 95 K3 quasi-smooth hypersurfaces in weighted projective spaces (which were proved to be the only ones). Later, Fletcher used this method to create more lists of different weighted complete intersections. From the K3 surfaces he developed two lists of...

متن کامل

Eliminating Higher-Multiplicity Intersections, III. Codimension 2

We study conditions under which a finite simplicial complex K can be mapped to R without higher-multiplicity intersections. An almost r-embedding is a map f : K → R such that the images of any r pairwise disjoint simplices of K do not have a common point. We show that if r is not a prime power and d ≥ 2r + 1, then there is a counterexample to the topological Tverberg conjecture, i.e., there is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sibirskii matematicheskii zhurnal

سال: 2020

ISSN: 0037-4474

DOI: 10.33048/smzh.2020.61.212